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More about interaction

In this chapter we draw together some of the ideas of the previous chapters,
particularly those relating to interdction, and consider studies with several
explanatory variables. The first stage in the analysis of such studies is to
classify the explanatory variables into those whose effects are of interest
(the exposures), and those whose effects are of no interest, but which must
be included in the model (the confounders). In order to illustrate the prob-
lems which arise with several confounders we introduce a new example in
Table 26.1* This shows the proportion of subjects with monoclonal gamma-
pathy by age, sex, and work. Work can be agricultural or non-agricultural
and is the exposure of interest. Age and sex are confounders.

26.1 Interaction between confounders

To control for the confounding effect of both age and sex using stratification
it would be necessary to form 5 x 2 = 10 age— sex strata. The separate
estimates of the effect of work for each stratum would then be pooled over
strata using the Mantel-Haenszel method. The same thing can be done by
fitting the model

log(Odds) = Corner + Age + Sex + Age - Sex + Work,

which includes age—sex interaction parameters. The total number of param-
eters for the corner, age, sex, and the age—sex interaction is 1+4+1+4 = 10,
which is the same as the number of the age—sex strata. Fitting the model
with interaction does the same job as age—sex stratification, which has one
parameter for each of the 10 strata.t

It is also possible to control for age and sex by omitting the interaction
term and fitting the model

log(Odds) = Corner + Age + Sex + Work.

*From Healy, M. (1988) GLIM. An Introduction, Oxford Science Publications.
TThe abbreviation AgexSex is sometimes used for the group of terms

Age + Sex + Age - Sex
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Table 26.1. Prevalence of monoclonal gammapathy

Agricultural (0) Non-agricultural (1)
Age Male (0) Female (1) Male (0) Female (1)

<40 (0) 1/1590 1/1926  2/1527  0/712
40-49 (1) 12/2345  7/2677  3/854  0/401
50-59 (2) 24/2787 15/2902  5/675  4/312
60-69 (3) 53/2489 38/3145  3/184  1/80
70+ (4) 95/2381 63/2918  2/75 0/20

¢ The estirnated effect of work is —0.134 with standard deviation 0.244 in
the model with interaction and —0.136 with standard deviation 0.243 in
the model without. In this case, therefore, omitting the interaction term
makes almost no difference.

Exercise 26.1. How should the effect of work be interpreted in terms of disease
prevalence?

When using stratification or logistic regression to control for confounders.

it is best to keep the number of parameters in the model as low as possible.
This is because both techniques are based on profile likelihood which can
be unreliable when there are too many parameters to eliminate. Including
interactions can require a lot of extra parameters, possibly too many to
deal with by using profile likelihood. For example, if one confounder has
45 levels and another has 6 levels, then the model with interaction requires
5 X 44 = 220 extra parameters. Even when none of the confounders has a
large number of levels it will still take many extra parameters to include in-
teractions when there are a lot of them. For example, 10 confounders each
with 3 levels require 180 extra parameters to include interactions between
all possible pairs. In the monoclonal gammapathy example the model with
interaction has 11 parameters while the model without interaction has only
7. By fitting a model without interaction we have reduced the number of
parameters from 11 to 7. This is not a great saving and little is lost in this
case by playing safe and fitting a model with the interaction.

It is possible, of course, to test for interaction between any pair of
confounders. For the monoclonal example the deviance for the model with
age-sex imteraction is 6.771 on 9 degrees of freedom, and the deviance
for the model without interaction is 7.649 on 13 degrees of freedom. The
difference between these two deviances is only 7.649 — 6.771 = 0.878, on
4 degrees of freedom, so the interaction is not significant. Unfortunately
such a test has only sufficient power to be useful when based on a few
degrees of freedom, and these are just the situations where nothing much
is gained by omitting interactions. Thus the decision about whether or
not to include interactions must usually be taken on other grounds. As
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a general rule, interactions between a confounder with many levels, and
any other confounder, are omitted. For confounders with fewer levels it is
only necessary to consider interaction between those pairs in which both
are known to be very strongly related to the outcome. It is then probably
best to include the interaction term for such pairs as a matter of course.
Age and sex often form such a pair, and are usually controlled for by using
a model which includes the age—sex interaction.

It can happen that a confounding variable has too many levels to be
included into a logistic regression model, even before considering interac-
tions. This occurs with matched case-control studies in which controls are
individually matched to each case. Each case-control set then corresponds
to a level of the categorical variable which defines the sets. The effects
of this variable are of no interest but they must be included in the model
when estimating the effects of other more interesting variables. The way
out of this dilemma is to use conditional logistic regression (see Chapter 29)
which uses a conditional likelihood in place of the profile likelihood.

26.2 Interaction between exposure and confounders

When controlling the effect of an exposure for the confounding effects of
other variables there is a basic assumption that there is no interaction
between exposure and the confounding variables. This assumption can be
tested by comparing the model without interaction with a model containing
the appropriate interaction term. :

For example, when using the model

log(Odds) = Corner + Age + Sex 4+ Work

to control the effect of work for age and sex, there is an assumption of no
interaction between work and age and no interaction between work and
sex. To test the work and age interaction we compare the model without
interactions with the model

log(Odds) = Corner + Age + Sex + Work + Work - Age.

To test the work and sex interaction we compare the model without inter-
actions with

log(Odds) = Corner + Age + Sex + Work + Work - Sex.

Exercise 26.2. Use the deviances in Table 26.2 to test for interaction between
work and the other two variables.
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Table 26.2. Testing for interaction

Model Deviance
Corner + Age + Sex + Work 7.65
Corner + Age + Sex + Work + Work-Age 5.81
Corner + Age + Sex + Work + Work-Sex 7.24
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Fig. 26.1. Log prevalence odds by age

26.3 Confounders measured on a quantitative scale

The variable age in Table 26.1 is measured on a quantitative scale (years)
which has been divided into five groups. When controlling for age we have
the choice between treating it as categorical with five levels, treating it as
quantitative with values equal to the mid- points of the five age groups,
or treating it as quantitative with values on the original scale. The last
of these alternatives is only possible when the data are in the form of
individual records.

Fig. 26.1 shows a plot of the log of the prevalence odds against the mid-
points of the age bands (35, 45, 55, 65, and 75 years) for male agricultural
workers. The plot shows that the log odds increases approximately linearly
with age. Plots for the other three groups in the study also show a roughly
log-linear relationship with age.

Exercise 26.3. From Fig. 26.1 make a rough estimate by eye of the gfa.dient of
the line relating log odds to age. Express your answer per 10 years of age.

The model which assumes a log-linear relationship between odds and
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Table 26.3. A quadratic relationship with age

Parameter Estimate SD

Corner —6.682 0.344
Work(1) —0.148 0.243
[Age] 1.204 0.264
[Agesq] —0.084 0.049
Sex(1) -0.583 0.115

age for each work-sex combination has fewer parameters than the model
which ignores the quantitative nature of the age scale, and this suggests
that there may be some advantage in treating age as quantitative with
values equal to mid-points of the five age groups. Making this modification
to the model with age, sex, and work, we obtain

log(Odds) = Corner + [Age] + Sex + Work,

where [Age] refers to the effect for a change in age of one year. There are
now only 4 parameters in this model and the work effect is —0.186 com-
pared to —0.134 using the model in which age was treated as a categorical
variable. This difference is large in comparison with the size of the effect,
even though in neither analysis does the effect achieve statistical signifi-
cance. The reason for the difference is that the relationship with age is not
entirely linear.

We can test for linearity using a log-quadratic model for the relationship
between log odds and age. The parameters in this model are estimated by
fitting the model

log(Odds) = Corner + [Age] + [Agesq] + Sex + Work,

where the variable agesq takes as values the squares of the values of age.
The results are shown in Table 26.3. When both [Age] and [Agesq] are
included the deviance is 8.93 on 15 degrees of freedom — 3.13 less than
when only [Age] is included. Referring this difference to the chi-squared
distribution on 1 degree of freedom shows it to be significant at the 0.10
level. This would not normally be considered very convincing evidence of
departure from linearity, but note that the estimate of the work effect is
now in rather better agreement with earlier values.

The important lesson to be learned from this example is that the effect
of a strong confounder such as age must be properly modelled, and that
the yardstick of statistical significance may not be adequate for deciding
upon the appropriate level of complexity. When the data are grouped in
frequency records it is best to treat the variable as categorical; when using
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Table 26.4. Interaction between age (quantitative) and work

Parameter Estimate - SD

Corner —6.211 0.201
Work(1) —0.299 0.471
[Age] 0.763 0.058
Sex(1) —0.584 0.115
[Age]- Work(1) 0.053 0.188

L individual records it is best to err on the side of over-detailed modelling
and to fit quadratic or even cubic dose-response relationships.

26.4 Interaction between categorical and quantitative variables

One situation where it can be valuable to treat a variable as quantitative
is when testing for interaction; the resulting reduction in the number of
parameters needed to measure interaction means that the test will be more
powerful.

We have seen how to test for interaction between age and work when
both are categorical variables, but what if age is a quantitative variable?
The model without interaction, in which age is quantitative, is

log(Odds) = Corner + [Age] + Sex + Work.

To test for interaction between work and quantitative age this is compared
with

log(Odds) = Corner + [Age| + Sex + Work + [Age] - Work.

The model without interaction assumes that the gradient of the log-linear
relationship of log odds with age is the same in both work groups, while the
model which contains the interaction term allows for different gradients in
the two work groups. The [Age].Work parameter measures the extent to
which the gradient in the second work group differs from the gradient in the
first, and its null value, corresponding to no interaction, is zero. Output
for the model which includes the interaction between the linear effect of
age and work is shown in Table 26.4.

Exercise 26.4. Use the output in Table 26.4 to test for interaction between age
as a quantitative variable and work.

Exercise 26.5. How many parameters would there be for the interaction term
[Age]-Work if there were three categories of work?

For a variable which is very strongly related to the response, such as
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Table 26.5. Interaction between [Age] and Work

Parameter Estimate  SD

Corner —7.064 0.553
Age(1) 1.666 0.567
Age(2) 2.394 0.562
Age(3) 3.239 0.562
Age(4) 3.860 0.559
Sex(1) —0.585 0.115
Work(1) 0.046 0.544
[Age]-Work(1) —0.083 0.220

age in this example, it may be necessary to model the relationship with age
more closely than by using a linear relationship. Even so, the linear part of
any new relationship will be the main part and it is worth testing for inter-
action just with this linear part. For example, if a quadratic relationship
with age is used, as in the model

log(Odds) = Corner + [Age] + [Agesq] + Sex + Work,

then the interaction of work with the linear effect of age is tested by in-
cluding the term [Age]-Work in the model. It is also possible to test for
the interaction of work with the linear effect of age when the effect of age
is modelled by a categorical variable. This is done by comparing

“log(Odds) = Corner + Age + Sex + Work.
with
log(Odds) = Corner + Age + Sex + Work + [Age] - Work.

This is a more powerful way of testing for interaction than including the
term Age-Work (which has four parameters), provided the relationship with
age is predominantly linear. Table 26.5 shows the results of this analysis,
with quantitative age coded 0 to 4. The deviance for this model is 7.51,
which is only a little smaller than the deviance for the model without
interaction. Thus there is no evidence that the work effect varies with
age. The same conclusion is reached by comparing the estimate of the
interaction parameter with its standard deviation. Since the estimate of
the work effect in the model without interaction is also not significant, it
seems clear that these data provide no evidence for a relationship between
agricultural work and the prevalence of monoclonal gammapathy.
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Table 26.6. Model in terms of separate work parameters

Age Work log(Odds) = Corner + - --

(
Whyage(2) + Age(1)
Whyage(3) + Age(2)
Whyage(4) + Age(3)
Whyage(5) + Age(4)

0 0 -

1 0 Age(1)

2 0 Age(2)

3 0 Age(3)

4 0 Age(4)

0 1 Whyage(1)
1 1

2 1

3 1

4 1

26.5 What to do when there is interaction

Interaction parameters are chosen specifically to test for interaction; their
estimated values are of no use in themselves. When there is interaction
it is necessary to reparametrize so that the new parameters provide a sat-
isfactory summary of the data in this situation. Indicator variables are a
useful way of doing this.

Suppose, for example, that in a study of work and age there was an
interaction between them. The most sensible way of reporting the results
would be to estimate the effect of work separately for each level of age,
but few packages allow this as a standard option. One way of doing it
is by separating the data into age groups and analyzing these separately.
Another is to reparametrize so that instead of one work parameter and four
work-age parameters, we use five work parameters, one for each age group.
Writing these separate work parameters as Wbyage, short for work by age,
the model is shown in Table 26.6.

The values taken by the indicator variables for the age parameters are
the same as before. The indicator variable for Whyage(1) takes the value 1
when work is at level 1 and age is at level 0, and 0 otherwise; the indicator
for Whyage(2) takes the value 1 when work is at level 1 and age is at level
1, and 0 otherwise; and so on. One advantage of using indicator variables
is that it is then possible to include another variable in the model with the
indicators. This model imposes the constraint that the indicator effects
are the same within the levels of this extra variable and provides estimates
of their common values. It would not be possible to do this if the data
were subdivided on age because subdividing on age is equivalent to fitting
interaction terms of all variables with age.

When there is interaction between two exposures it is commonly re-
ported by creating a new categorical variable with a level for each combi-
nation of the levels of the two exposures. For two exposures, each on four
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Table 26.7. Rate parameters per 100000 person-years

A
B 0 1
0 50 150
1 200 A

levels, the new variable would have 16 levels, with level 0 corresponding to
level zero on both exposures and level 16 corresponding to level 3 on both
exposures. There are 15 parameters for this new variable, measuring the
ratio of the rate (or odds) for each one of the levels relative to the zero
level. These are entered in the model in place of the 6 parameters for the
two exposures and the 9 parameters for their interaction. The estimated
parameters would be displayed in a four by four table, with the levels of
one exposure determining the rows and the levels of the other determining
the columns.

26.6 Interaction is scale-dependent

Interaction parameters are chosen to measure departures from a model.
When the effects of variables are measured as ratios interaction parame-
ters are ratios, chosen to measure departures from a multiplicative model.
When the effects of variables are measured as differences (see Chapter 28)
interaction parameters are differences chosen to measure departures from
an additive model. Thus interaction depends on how the effects are mea-
sured. For example, consider two explanatory variables, A and B, each
with two levels. Values for three of the parameters involved are shown in
Table 26.7. For the moment the fourth parameter, ), is left unspecified.
When effects are measured as ratios the effect of A when B is at level 0 is
15/5 = 3, and the effect of A when B is at level 1 is A/20. The interaction
parameter is the ratio of these two effects which is A/60. When effects are
measured as differences the effect of A when B is at level 0 is 15 — 5 = 10,
and the effect of A when B is at level 1 is A — 20. The interaction param-
eter is now the difference between these two effects, which is A — 30. It
follows that if A = 60 there is no departure from the multiplicative model
but there is a departure from the additive model. Similarly if A = 30 there
is no departure from the additive model but there is a departure from the

. multiplicative model.

The choice between measuring effects as ratios or differences is usually
an empirical one, with the investigator preferring to measure effects in such
a way as to minimize the interaction, but there are sometimes biological
grounds for preferring one method to the other.
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Solutions to the exercises

26.1 The multiplicative effect of work is the ratio of the prevalence odds
for non-agricultural workers to the prevalence odds for agricultural workers.

26.2 The degrees of freedom for the deviances are

20— (1+4+1+1) = 13
20— (1+4+1+1+4) = 9
20— (1+4+1+14+1) = 12

The change of deviance with inclusion of the Work.Age interaction is 1.84
with 4 degrees of freedom, and for the Work.Sex interaction it is 0.41 with
1 degree of freedom. Neither is significant.

26.3 The change in log odds over the age range of 35 to 75 is approxi-
mately +4. The gradient is therefore approximately +1 per 10 year age
band.

26.4 The Wald test for interaction between the linear effect of age and

work is )
0.053
<_0.188) = 0.079,

which is not significant.

26.5 There would be two parameters for this interaction term.
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